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Permutations and Combinations

1. If |S| = n, how many r permutations of S are there? What about r-combinations?

If n < r, then there are 0 r-permutations and r-combinations.

Otherwise, there are n!
(n−r)!

r-permutations and
(
n
r

)
r-combinations.

2. How many permutations of ’ABCDEFG’ contain both ’ABC’ and ’DE’ as consecutive
substrings? How many permutations of ’ABCDEFG’ have A before B?

There are 4! permutations with ’ABC’ and ’DE’ as consecutive substrings.

There are 7!
2

permutations with A before B.

Binomial Coefficients and Binomial Theorem

Definitions

1. The number of r-combinations of a set S with |S| = n is also written as
(
n
r

)
and called

a binomial coefficient.

2. The binomial coefficients
(
n
r

)
for n ≥ 0 and r ≥ 0 are arranged in Pascal’s triangle

as follows: the nth row has the n entries
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
.

3. Let n ∈ N. Then (x + y)n =
∑n

i=0

(
n
i

)
xn−iyi. (Or (x + y)n =

∑n
i=0 x

iyn−i.) This is the
binomial theorem.

Exercises

1. Using induction, prove that
∑n

i=r

(
i
r

)
=
(
n+1
r+1

)
where n, r ∈ N and n > r. (In class, you

saw a combinatorial proof, and we’ll give an algebraic one here.)

We prove it by induction. Our base case is n = r. In this case,
∑n

i=r

(
i
r

)
=
(
n
n

)
= 1.

The right hand side is
(
n+1
n+1

)
= 1.

Now assume it is true for n > r. We will show it for n + 1 > r.∑n+1
i=r

(
i
r

)
=
∑n

i=r

(
i
r

)
+
(
n+1
r

) IH
=
(
n+1
r+1

)
+
(
n+1
r

)
=
(
n+2
r+1

)
.

2. Prove
∑n

k=0(−1)k
(
n
k

)
= 0.

Use the binomial theorem. 0 = (1 + (−1))n =
∑n

k=0 1n−k(−1)k
(
n
k

)
=
∑n

k=0(−1)k
(
n
k

)
.

3. Prove
∑n

k=0 2k
(
n
k

)
= 3n. Can you generalize this to

∑n
k=0 a

kbn−k
(
n
k

)
?

Use the binomial theorem. (1 + 2)n =
∑n

k=0 1n−k2k
(
n
k

)
=
∑n

k=0 2k
(
n
k

)
.

The general form is (a + b)n.
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Combinatorial Proofs

In class, you saw Fibonacci numbers and bitstrings with no consecutive 1’s. We will prove
that the number of such bitstrings of length n is the n + 2th Fibonacci number by showing
they satisfy the same recurrence.

Let bn be the number of length n bitstrings with no consecutive 1’s. Let on be the number
of length n bitstrings ending in 1 with no conecutive 1’s. Let zn be the number of length n
bitstrings ending in 0 with no consecutive 1’s.

1. Show that bn = zn + on.

The left hand side counts the number of bitstrings of length n with no consecutive 1’s.

The right hand side also counts these, and we have just split up bitstrings into those
ending with 0 and those ending with 1.

2. Show that zn+1 = bn.

Let Zn+1 be the set of bitstrings of length n + 1 with no repeated 1’s that end with 0.

Let Bn be the set of bitstrings of length n with no repeated 1’s.

Then the function f : Zn+1 → Bn which sends a bitstring of length n + 1 with no
repeated 1’s and ending in 0 to the substring formed by its first n digits is a bijection.

3. Show that on+1 = zn.

Let On+1 be the set of bitstrings of length n + 1 with no repeated 1’s that end with 1.

The function g : On+1 → Zn which sends a bitstring of length n + 1 with no repeated
1’s and ending in 1 to the substring formed by the first n digits is a bijection.

4. Conclude that bn+2 = bn+1 + bn. Show that b0 = f2 and b1 = f3. This concludes the
proof, because bn satisfies the same recurrence relation as fn+2, and they have the same
base cases. (If you don’t like this, try using induction to prove that they must be the
same sequence.)

bn+2 = on+2 + zn+2 = zn+1 + zn+2 = bn + bn+1.

b0 = 1, b1 = 2, b2 = 3 and so on. (There was a typo in the problem. It used to say ’the
n + 1th fibonacci number.’) Thus bn = fn+2.


