Permutations and Combinations

- 1. If |S| = n, how many r permutations of S are there? What about r-combinations? If n < r, then there are 0 r-permutations and r-combinations.
 - Otherwise, there are $\frac{n!}{(n-r)!}$ r-permutations and $\binom{n}{r}$ r-combinations.
- 2. How many permutations of 'ABCDEFG' contain both 'ABC' and 'DE' as consecutive substrings? How many permutations of 'ABCDEFG' have A before B?

There are 4! permutations with 'ABC' and 'DE' as consecutive substrings.

There are $\frac{7!}{2}$ permutations with A before B.

Binomial Coefficients and Binomial Theorem

Definitions

- 1. The number of r-combinations of a set S with |S| = n is also written as $\binom{n}{r}$ and called a **binomial coefficient**.
- 2. The binomial coefficients $\binom{n}{r}$ for $n \geq 0$ and $r \geq 0$ are arranged in **Pascal's triangle** as follows: the n^{th} row has the n entries $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.
- 3. Let $n \in \mathbb{N}$. Then $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$. (Or $(x+y)^n = \sum_{i=0}^n x^i y^{n-i}$.) This is the binomial theorem.

Exercises

1. Using induction, prove that $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$ where $n, r \in \mathbb{N}$ and n > r. (In class, you saw a combinatorial proof, and we'll give an algebraic one here.)

We prove it by induction. Our base case is n = r. In this case, $\sum_{i=r}^{n} {i \choose r} = {n \choose n} = 1$. The right hand side is ${n+1 \choose n+1} = 1$.

Now assume it is true for n > r. We will show it for n + 1 > r.

$$\textstyle\sum_{i=r}^{n+1}\binom{i}{r}=\sum_{i=r}^{n}\binom{i}{r}+\binom{n+1}{r}\stackrel{IH}{=}\binom{n+1}{r+1}+\binom{n+1}{r}=\binom{n+2}{r+1}.$$

2. Prove $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

Use the binomial theorem. $0 = (1 + (-1))^n = \sum_{k=0}^n 1^{n-k} (-1)^k \binom{n}{k} = \sum_{k=0}^n (-1)^k \binom{n}{k}$.

3. Prove $\sum_{k=0}^{n} 2^{k} \binom{n}{k} = 3^{n}$. Can you generalize this to $\sum_{k=0}^{n} a^{k} b^{n-k} \binom{n}{k}$?

Use the binomial theorem. $(1+2)^n = \sum_{k=0}^n 1^{n-k} 2^k \binom{n}{k} = \sum_{k=0}^n 2^k \binom{n}{k}$.

The general form is $(a+b)^n$.

Combinatorial Proofs

In class, you saw Fibonacci numbers and bitstrings with no consecutive 1's. We will prove that the number of such bitstrings of length n is the $n + 2^{th}$ Fibonacci number by showing they satisfy the same recurrence.

Let b_n be the number of length n bitstrings with no consecutive 1's. Let o_n be the number of length n bitstrings ending in 1 with no conecutive 1's. Let z_n be the number of length n bitstrings ending in 0 with no consecutive 1's.

1. Show that $b_n = z_n + o_n$.

The left hand side counts the number of bitstrings of length n with no consecutive 1's. The right hand side also counts these, and we have just split up bitstrings into those ending with 0 and those ending with 1.

2. Show that $z_{n+1} = b_n$.

Let Z_{n+1} be the set of bitstrings of length n+1 with no repeated 1's that end with 0. Let B_n be the set of bitstrings of length n with no repeated 1's.

Then the function $f: Z_{n+1} \to B_n$ which sends a bitstring of length n+1 with no repeated 1's and ending in 0 to the substring formed by its first n digits is a bijection.

3. Show that $o_{n+1} = z_n$.

Let O_{n+1} be the set of bitstrings of length n+1 with no repeated 1's that end with 1. The function $g: O_{n+1} \to Z_n$ which sends a bitstring of length n+1 with no repeated 1's and ending in 1 to the substring formed by the first n digits is a bijection.

4. Conclude that $b_{n+2} = b_{n+1} + b_n$. Show that $b_0 = f_2$ and $b_1 = f_3$. This concludes the proof, because b_n satisfies the same recurrence relation as f_{n+2} , and they have the same base cases. (If you don't like this, try using induction to prove that they must be the same sequence.)

$$b_{n+2} = o_{n+2} + z_{n+2} = z_{n+1} + z_{n+2} = b_n + b_{n+1}.$$

 $b_0 = 1, b_1 = 2, b_2 = 3$ and so on. (There was a typo in the problem. It used to say 'the $n + 1^{th}$ fibonacci number.') Thus $b_n = f_{n+2}$.