Permutations and Combinations

Definitions

- 1. An r-permutation of a set S is an ordered arrangement of r elements of S.
- 2. An *r*-combination of a set S is an unordered selection of r elements of S.

Exercises

1. If |S| = n, how many r permutations of S are there? What about r-combinations?

2. How many permutations of 'ABCDEFG' contain both 'ABC' and 'DE' as consecutive substrings? How many permutations of 'ABCDEFG' have A before B?

Binomial Coefficients and Binomial Theorem

Definitions

- 1. The number of r-combinations of a set S with |S| = n is also written as $\binom{n}{r}$ and called a **binomial coefficient**.
- 2. The binomial coefficients $\binom{n}{r}$ for $n \ge 0$ and $r \ge 0$ are arranged in **Pascal's triangle** as follows: the n^{th} row has the *n* entries $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.
- 3. Let $n \in \mathbb{N}$. Then $(x+y)^n = \sum_{i=0}^n {n \choose i} x^{n-i} y^i$. (Or $(x+y)^n = \sum_{i=0}^n x^i y^{n-i}$.) This is the binomial theorem.

Exercises

1. Using induction, prove that $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$ where $n, r \in \mathbb{N}$ and n > r. (In class, you saw a combinatorial proof, and we'll give an algebraic one here.)

- 2. Prove $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$
- 3. Prove $\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$. Can you generalize this to $\sum_{k=0}^{n} a^k b^{n-k} \binom{n}{k}$?

Combinatorial Proofs

In class, you saw Fibonacci numbers and bitstrings with no consecutive 1's. We will prove that the number of such bitstrings of length n is the $n + 1^{th}$ Fibonacci number by showing they satisfy the same recurrence.

Let b_n be the number of length n bitstrings with no consecutive 1's. Let o_n be the number of length n bitstrings ending in 1 with no conecutive 1's. Let z_n be the number of length n bitstrings ending in 0 with no consecutive 1's.

- 1. Show that $b_n = z_n + o_n$.
- 2. Show that $z_{n+1} = b_n$.
- 3. Show that $o_{n+1} = z_n$.
- 4. Conclude that $b_{n+2} = b_{n+1} + b_n$. Show that $b_0 = f_1$ and $b_1 = f_2$. This concludes the proof, because b_n satisfies the same recurrence relation as f_{n+1} , and they have the same base cases. (If you don't like this, try using induction to prove that they must be the same sequence.)