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Probability

Before, we defined probability as the number of ’good’ outcomes (size of an event) divided by
the total number of outcomes. We do this more formally as: let S be a (countable) sample
space. A probability distribution is a function p : S → R such that:

1. 0 ≤ p(s) ≤ 1 for all s ∈ S (all probabilities should be nonnegative and less than 1)

2.
∑

s∈S p(s) = 1 (the sum of all probabilities should be 1)

We call p(s) the probability of an outcome s ∈ S. For an event E ⊂ S, we define the
probability as p(E) =

∑
s∈E p(s).

Exercises

For the following, let S be a sample space, and p a probability distribution on S.

1. For any event E ⊂ S, show that p(E) = 1− p(E).

p(E) + p(E) =
∑
s∈E

p(s) +
∑
s∈E

p(s) =
∑
s∈S

p(s) = 1

The second equality is because E and E are disjoint and their union is the whole
sample space. The last equality is from the definition of a probability distribution.

2. For any events E1, E2 ⊂ S, show that p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2).

p(E1)+p(E2) =
∑
s∈E1

p(s)+
∑
s∈E2

p(s) =
∑

s∈E1∪E2

p(s)+
∑

s∈E1∩E2

p(s) = p(E1∪E2)+p(E1∩E2)

The second equality is because |E1 ∪ E2| = |E1|+|E2|−|E1 ∩ E2| (inclusion exclusion).

3. For any parwise disjoint events E1, E2, · · · ⊂ S, show that p(∪iEi) =
∑

i p(Ei).

Since the events Ei are disjoint, we know that s ∈ ∪iEi ⇐⇒ s ∈ Ei for exactly one i.
Therefore:

p(∪iEi) =
∑

s∈∪iEi

p(s) =
∑
i

∑
s∈Ei

p(s) =
∑
i

p(Ei)

4. We say that events E1, E2 ⊂ S are independent if p(E1 ∩ E2) = p(E1)p(E2). Under
what situation can two disjoint events E1, E2 ⊂ S be independent?

If E1 ∩ E2 = ∅, then p(E1 ∩ E2) = p(∅) = 0. The only way for a product of two real
numbers to be 0 is if at least one is zero. Hence at least one of p(E1) and p(E2) must
be 0. (So usually, disjoint events will not be independent!)
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Conditional Probability

Exercises

1. Prove that if p(E | F ) = p(E), then E and F are independent events.

p(E | F ) =
p(E ∩ F )

p(F )
= p(E) =⇒ p(E ∩ F ) = p(E)p(F )

2. A Bernoulli trial is an experiment with two outcomes, one (“success”) with fixed
probability p and the other (“failure”) with probability 1−p. Prove that the probability
of k successes in n independent Bernoulli trials is

(
n
k

)
pk(1 − p)n−k. What is the sum∑n

k=0

(
n
k

)
(pk)(1− p)n−k in terms of a simple expression?

Think of n independent (it is important that they are independent!) Bernoulli trials as
a string of n letters which are either S (success) or F (failure). The the number of ways
to get k successes in n trials is the number of strings with k S’s and n − k F’s. The
probability of getting such a string is

(
n
k

)
pk(1− p)n−k because we also need to account

for the probability of success (p) and the probability of failure (q = q − p).

n∑
k=0

(
n

k

)
(pk)(1− p)n−k = 1

Two ways to prove this are: (1) this is the sum of all probabilities in a probability dis-
tribution, so must be equal to 1. (2) Using the binomial theorem, this is the expansion
of (p + (1− p))n = 1n = 1.

Bayes’ Theorem

Exercises

1. Show that p(F | E)p(E) + p(F | E)p(E) = p(F ). Hence we can also write Bayes’

Theorem as p(E | F ) = p(F |E)p(E)
p(F )

. Prove this form of Bayes’ Theorem using the
definition of conditional probability.

p(F | E)p(E) + p(F | E)p(E) =
p(F ∩ E)

p(E)
p(E) +

p(F ∩ E)

p(E)
p(E)

= p(F ∩ E) + p(F ∩ E) = p(F )

and this proves the alternative form of Bayes’ theorem.

The last equality is from using problem 3 on the previous side since F ∩E and F ∩E
are disjoint (since E and E are) and F ∩ E ∪ F ∩ E = F .

(Often it will be more convenient to use one form over another for computations. For
example, some cases may give p(F ) directly whereas other cases may cause computing
the larger expression p(F | E)p(E) + p(F | E)p(E) to be more intuitive.)


