Divisibility and Modular Arithmetic

Definitions

- 1. Let $a, b \in \mathbb{Z}$ and $a \neq 0$. We say "a divides b" if there is $c \in \mathbb{Z}$ such that $b = ac$. We write $a \mid b$. If a does not divide b, then we write $a \nmid b$. (By definition, any nonzero integer divides 0.)
- 2. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. We say "a is congruent to b modulo m" if $m \mid a-b$. We write this as $a \equiv b \mod m$ or $a \equiv b \mod m$. If a is not congruent to b, we write $a \not\equiv b \mod m$.

Exercises

- 1. If a | bc, is it the case that a | b or a | c? What about a | $b + c$? These are both false in general, though we will see a case where the first one is true.
- 2. Let $m > 1$ be an integer. What is the cardinality of the set $\{x \mod m \mid x \in \mathbb{Z}\}$? $\{x \mod m \mid x \in \mathbb{Z}\}\$ has cardinality m.
- 3. Is it true that $x \equiv y \pmod{m} \iff ax \equiv ay \pmod{m}$ for any integers $a, x, y \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$? If not, is either implication true (remember a biconditional is equivalent to two implications)?

The given statement is false. However, $x \equiv y \pmod{m} \implies ax \equiv ay \pmod{m}$ is true (the converse fails). Here is a proof of this fact: $x \equiv y \pmod{m} \iff m \mid (x - y) \implies$ $m \mid a(x - y) \iff m \mid ax - ay \iff ax \equiv ay \pmod{m}$.

As a remark, note that the biconditional will be true whenever $m \mid (x - y) \iff m \mid$ $a(x - y)$ is true.

4. Compute 5^{23001} mod 6. Compute 80^{40} mod 21.

Note that $5 \equiv -1 \pmod{6}$, so $5^{23001} \pmod{6} \equiv (-1)^{23001} \pmod{6} \equiv -1 \pmod{6}$. Note that $80 \equiv -4 \pmod{21}$, so $80^{40} \mod{21} \equiv (-4)^{40} \mod{21}$. There are various ways to compute this. One way is to notice that $(-4)^3 \equiv -1 \mod 21$. Then we have that $(-4)^{40} \mod 21 \equiv (-4)^{39}(-4) \mod 21 \equiv (-1)^{13}(-4) \mod 21 \equiv 4 \mod 21$.

Bases

Definitions

- 1. The base b-representation of an integer $m \in \mathbb{Z}$ is the unique representation of m in the form: $\sum_{i=0}^{k} a_i b^i$ where $k, a_i \in \mathbb{Z}_{\geq 0}, a_i < b$, and $a_k \neq 0$.
- 2. There are some special names for particular b. If $b = 2$, we call it binary; if $b = 10$, we call it decimal, and if $b = 16$, we call it hexadecimal.

Exercises

1. Express 74 in base 2. Express 27 in base 9.

74 is 1001010 in binary. 27 in base 9 is 30.

2. Convert the binary number 10101 to base 4. Do the same for base 8. Can you guess any pattern? 10101 is 111 in base 4. It's 25 in base 8.

Primes

Definitions

- 1. A positive integer greater than 1 is *prime* if its only factors are 1 and itself. Otherwise, if it has more factors, we call it composite.
- 2. A prime factorization of a positive integer n is a representation of n as a product of prime numbers.
- 3. The Fundamental Theorem of Arithmetic says that every positive integer greater than 1 has a unique prime factorization, up to reordering (i.e. $12 = 2^2 * 3 = 3 * 2^2$).

Exercises

1. Consider the theorem: Let $a, b \in \mathbb{Z}$ and let d be the largest integer dividing both a and b (we call d the greatest common divisor of a and b, and we write $d = \gcd(a, b)$). Then there are $x, y \in \mathbb{Z}$ such that $xa + yb = d$.

Use this to prove the statement: Let p be a prime number. If $p \mid ab$ and $p \nmid a$ for $a, b \in \mathbb{Z}$, then p | b. Fill in the blanks in the proof below.

Proof: Since $p \nmid a$, then $gcd(p, a) =$ Then we can use the supplied theorem to get integers x, y such that $xp + ya =$. Now multiply both sides by b to get the equation $xpb + yab =$. By assumption, p | ab, and p | p, so p | (xpb + yab). Therefore p also divides the right hand side. Therefore, $p \mid$ ____, completing the proof.

2. The statement we proved above is equivalent to the following statement: Let p be a prime number. If $p \mid ab$, then $p \mid a$ or $p \mid b$. Can you see why? In English, this says that if a prime number divides a product of two numbers, then it must divide one of those numbers.