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More Induction

1. Assume you only know that d
dx

(x0) = 0 and also that the product rule is true. Is it
possible to use induction to prove d

dx
(xn) = nxn−1 for all integers n ≥ 0?

No. At the inductive step for n = 0 (i.e. proving P (1) assuming P (0)), we need to use
P (1) to complete the proof, because we’d like to reduce d

dx
(x1) = xa d

dx
xb + xb d

dx
xa for

some a + b = 1, but the only such integers are 0 and 1.

2. Now assume you only know that d
dx

(x) = 1 and also that the product rule is true. Now
use induction to prove d

dx
(xn) = nxn−1 for all integers n ≥ 1.

Yes. Here is the proof:

Base Case: n = 1, then P (1) : d
dx

(x1) = 1x0 = 1 which is given to us.

Inductive Hypothesis: Assume P (n).

Inductive Step: Show P (n + 1). Since n ≥ 1, then n + 1 ≥ 2. Therefore:

d

dx
(xn+1) =

d

dx
(xnx) = xn d

dx
(x) + x

d

dx
(xn) = xn + nx ∗ xn−1

where the last equality follows from applying P (1) and P (n). This is okay since P (1)
is the base case, and P (n) is our inductive hypothesis. Then:

xn + nx ∗ xn−1 = xn + nxn = xn(n + 1) = (n + 1)xn

3. Is it possible to extend your proof above to all real numbers? No. The real numbers
with the usual order is not a well-ordered set, so we cannot apply induction.

4. Show that 1(1!) + 2(2!) + · · ·+ n(n!) = (n + 1)!− 1 for all integers n ≥ 0.

Base Case: n = 0, then P (0) : 0 = (0 + 1)!− 1 = 1− 1 = 0.

Inductive Hypothesis: Assume P (n).

Inductive Step: Show P (n + 1).

1(1!) + 2(2!) + · · ·+ (n + 1)(n + 1)!
P (n)
= ((n + 1)!− 1) + (n + 1)(n + 1)!

= (n + 1)!(1 + n + 1)− 1 = (n + 2)(n + 1)!− 1

= (n + 2)!− 1

5. Show that 9 | 4n + 15n− 1 for all integers n ≥ 0.

Base case: n = 0, P (0) : does 9 divide 40 + 15(0)− 1? 40 + 15(0)− 1 = 0, and 9 | 0.

Inductive Hypothesis: Assume P (n).

Inductive Step: Show P (n + 1).

4n+1 + 15(n + 1)− 1 = 4 ∗ 4n + 15n + 15− 1 = (3 + 1)4n + 15n + 15− 1

= 3 ∗ 4n + 15 + (4n + 15n− 1)

Since 9 | 4n + 15n− 1 by P (n), then it is enough to show 9 | 3 ∗ 4n + 15 = 3(4n + 5).
Since 4n + 5 ≡ 1n + 2 ≡ 0 mod 3, then 9 | 3 ∗ 4n + 15.
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Recursive Definitions

1. Recall that an arithmetic progression is of the form an = a + nd, where a, d ∈ R and
n ∈ N. Write this sequence using a recursive definition.

an+1 = an + d, and a0 = a.

2. Recall that a geometric progression is of the form an = arn, where a, r ∈ R and n ∈ N.
Write this sequence using a recursive definition.

an+1 = ran, and a0 = a.

3. Give a recursive definition of the set N.

N is the set S where (base case) 0 ∈ S and (inductive step) x ∈ S =⇒ x + 1 ∈ S.

4. Recall the Fibonacci sequence defined by f0 = 0, f1 = 1, and fn + fn+1 = fn+2 for all
n ∈ N. Prove (using induction) that f0f1 + f1f2 + · · ·+ f2n−1f2n = f 2

2n for n ∈ Z+.

We’ll prove it by induction.

Base Case: n = 1, P (1) : f0f1 + f1f2 = 0 ∗ 1 + 1 ∗ 1 = 12 = f 2
2 .

Inductive Hypothesis: Assume P (n).

Inductive Step: Show P (n + 1).

f0f1 + f1f2+ · · ·+ f2n−1f2n + f2nf2n+1 + f2n+1f2n+1

P (n)
= f 2

2n + f2nf2n+1 + f2n+1f2n+2 = f2n(f2n + f2n+1) + f2n+1f2n+2

= f2n(f2n+2) + f2n+1f2n+2 = (f2n + f2n+1)f2n+2 = f 2
2n+2

5. Prove (using induction) that fn−1fn+1 − f 2
n = (−1)n for all n ∈ Z+.

We’ll prove it by induction.

Base Case: n = 1, P (1) : f0f2 − f 2
1 = 0 ∗ 1− 1 ∗ 1 = (−1)1.

Inductive Hypothesis: Assume P (n).

Inductive Step: Show P (n + 1).

fnfn+2 − f 2
n+1 = fn(fn+1 + fn)− fn+1(fn + fn−1)

= fnfn+1 + f 2
n − fn+1fn − fn+1fn−1

= (fnfn+1 − fn+1fn) + (f 2
n − fn+1fn−1)

= (fnfn+1 − fnfn+1)− (fn−1fn+1 − f 2
n)

= 0− (fn−1fn+1 − f 2
n) = −(fn−1fn+1 − f 2

n)

P (n)
= = −(−1)n = (−1)(−1)n = (−1)n+1


