math 55 - more induction and recursive definitions Feb. 26

More Induction

1. Assume you only know that %(1’0) = 0 and also that the product rule is true. Is it

possible to use induction to prove %(az’”) = nz"~! for all integers n > 07

No. At the inductive step for n = 0 (i.e. proving P(1) assuming P(0)), we need to use
P(1) to complete the proof, because we’d like to reduce % (z') = Iad%xb + xb%xa for

dx
some a + b = 1, but the only such integers are 0 and 1.

2. Now assume you only know that %(:L‘) = 1 and also that the product rule is true. Now

use induction to prove - (z") = na"* for all integers n > 1.

Yes. Here is the proof:

Base Case: n = 1, then P(1) : £(z') = 12 = 1 which is given to us.
Inductive Hypothesis: Assume P(n).

Inductive Step: Show P(n + 1). Since n > 1, then n + 1 > 2. Therefore:

d d n n d d ny _ _..n n—1
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where the last equality follows from applying P(1) and P(n). This is okay since P(1)

is the base case, and P(n) is our inductive hypothesis. Then:

(") =

1

" +nrxa" T =2"+na" =2"(n+1) = (n+1)2"

3. Is it possible to extend your proof above to all real numbers? No. The real numbers
with the usual order is not a well-ordered set, so we cannot apply induction.
4. Show that 1(1!) +2(2!) +--- +n(n!) = (n+ 1)! — 1 for all integers n > 0.
Base Case: n =0, then P(0):0=(0+1)!—-1=1-1=0.
Inductive Hypothesis: Assume P(n).
Inductive Step: Show P(n + 1).

1) +2@2) 4+ D)+ ) (1) = 1)+ (n+ 1)(n + 1)!

=n+D!1+n+1)—1=n+2)(n+1)! -1
=(n+2)!-1
5. Show that 9 | 4" 4+ 15n — 1 for all integers n > 0.

Base case: n =0, P(0) : does 9 divide 4° 4+ 15(0) — 1?7 4° +15(0) — 1 =0, and 9 | 0.

Inductive Hypothesis: Assume P(n).

Inductive Step: Show P(n + 1).

4 4 15m+1) —1=4%4"+15n+ 15— 1= (3+1)4" + 15n + 15— 1
=3*x4"+ 15+ (4" + 15n — 1)

Since 9 | 4" + 15n — 1 by P(n), then it is enough to show 9 | 3 % 4™ + 15 = 3(4™ + 5).
Since 4" +5=1"+2=0 mod 3, then 9| 3% 4™ + 15.
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Recursive Definitions

1. Recall that an arithmetic progression is of the form a,, = a + nd, where a,d € R and
n € N. Write this sequence using a recursive definition.

Gpy1 = Gn + d, and ag = a.
2. Recall that a geometric progression is of the form a,, = ar™, where a,r € R and n € N.
Write this sequence using a recursive definition.

Qpy1 = Tay, and ag = a.

3. Give a recursive definition of the set N.

N is the set S where (base case) 0 € S and (inductive step) 1 € S = z+1€ S.

4. Recall the Fibonacci sequence defined by fo =0, fi = 1, and f,, + fui1 = fnye for all
n € N. Prove (using induction) that fofi + fifs + -+ fon_1fon = f3, for n € ZT.
We’ll prove it by induction.

Base Case: n=1, P(1): fofi+ fifo=0%1+1x1=1%= f2.
Inductive Hypothesis: Assume P(n).
Inductive Step: Show P(n + 1).

fofi + fifot -+ fon1fon + fonfons1 + font1fonra

P(n
w ngn + fonfont1 + font1 font2 = fon(fon + font1) + fons1 fonto
= fon(font2) + fons1font2 = (fon + fons1) fons2 = f22n+2

5. Prove (using induction) that f, 1 f,1 — f2 = (=1)"for alln € Z*.
We'll prove it by induction.
Base Case: n=1, P(1): fofo — ff =0%x1—1x1=(-1)L
Inductive Hypothesis: Assume P(n).
Inductive Step: Show P(n + 1).

JnSnie — 3+1 = fo(fas1 + fn) = fosr (fo + fr-1)
= fafuer + J2 = fasifo — fasrfoa
= (fuSusr = fosrfn) + (f2 = fasrSn1)
= (fnfn+1 - fnfn—H) - (fn—lfn+1 - fﬁ)
=0~ (facrforr = £) = =(faifora = £7)

W (1) = (1)1 = (-



