Chinese Remainder Theorem

1. Compute the solution to the following system of congruences:

$$
x \equiv 1 \mod 3
$$

$$
x \equiv 3 \mod 5
$$

$$
x \equiv 5 \mod 7
$$

Solution: Compute $m = 3 * 5 * 7 = 105$. Compute $M_1 = 35, M_2 = 21, M_3 = 15$. Compute inverses:

> $M_1y_1 \equiv 35y_1 \equiv 1 \pmod{3} \implies y_1 \equiv 2 \mod{3}$ $M_2y_2 \equiv 21y_2 \equiv 1 \pmod{5} \implies y_2 \equiv 1 \mod{5}$ $M_3y_3 \equiv 15y_3 \equiv 1 \pmod{7} \implies y_3 \equiv 1 \mod 7$

Then plug this in: $x \equiv 1 * 35 * 2 + 3 * 21 * 1 + 5 * 15 * 1 \equiv 208 \equiv 103 \mod 105$.

(Alternatively, you could have noticed that $1 \equiv -2 \mod 3, 3 \equiv -2 \mod 5$, and $5 \equiv 1$ $-2 \mod 7$ to find $x \equiv -2 \mod 105$.

2. Check that the following system of congruences has no solutions. (In general, there may or may not be solutions when the m_i are not pairwise relatively coprime.)

$$
x \equiv 1 \mod 2
$$

$$
x \equiv 3 \mod 4
$$

$$
x \equiv 5 \mod 8
$$

It is enough to check all cases for $x \mod 8$.

If $x \not\equiv 5 \mod 8$, then the last congruence is violated. If $x \equiv 5 \mod 8$, then we will have $x \equiv 1 \mod 2$ (can you see why?). However, we will not have $x \equiv 3 \mod 4$. For example, $5 \equiv 1 \mod 4$, not 3.

The problem here is that $x \equiv 5 \mod 8$, gives a congruence for all divisors of 8, because if 8 | $x - 5$, then since 2, 4 | 8, then we also have 2, 4 | $x - 5$.

Induction

Exercises

1. Which numbers can be written as a sum $10a + 25b$ where $a, b \in \mathbb{Z}_{\geq 0}$?

Solutions: We can write 0, 10, and all numbers of the form $20 + 5k$ for $k \in \mathbb{Z}_{\geq 0}$.

 $0 = 10 * 0 + 25 * 0$. $10 = 10 * 1 + 25 * 0$. We prove the last part by strong induction:

Let $P(n)$ be the statement $20 + 5k$ can be written as $10a + 25b$ for $a, b \in \mathbb{Z}_{\geq 0}$.

Our base cases are $P(0)$: $20 + 5(0) = 20 = 10 * 2 + 25 * 0$ and $P(1)$: $20 + 5(1) = 25 =$ $10 * 0 + 25 * 1.$

For the inductive hypothesis, assume $P(0), P(1), \ldots, P(n)$ are true. Then we will use them to prove that $P(n + 1)$ is true.

 $20 + 5(n + 1) = 20 + 5n + 5$. We consider two cases: if $n > 1$, then we have that $20 + 5n + 5 - 10 = 20 + 5(n - 1) = 10a + 25b$ because of $P(n - 1)$. Adding 10 to this gives $10(a + 1) + 25b = 20 + 5(n + 1)$. Thus $P(n + 1)$ is true.

In the other case, if $n \geq 1$, then $n = 0$ or $n = 1$, and these are our base cases.

2. Show that $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}$ $\frac{1}{6}(n(n+1)(2n+1)).$ Solution: Let $P(n)$ be the statement $\sum_{i=1}^{n} i^2 = \frac{1}{6}$ $\frac{1}{6}(n(n+1)(2n+1)).$ Our base case is $P(1): 1^2 = \frac{1}{6}$ $\frac{1}{6}(1(2)(3)) = 1.$

For the inductive hypothesis, assume $P(n)$. Then we will use this to prove $P(n + 1)$. $1^2 + \cdots + n^2 + (n+1)^2 = \frac{1}{6}$ $\frac{1}{6}(n(n+1)(2n+1)) + (n+1)^2$ using $P(n)$. Then just solve:

$$
\frac{1}{6}(n(n+1)(2n+1)) + (n+1)^2 = (n+1)(\frac{1}{6}(n(2n+1)) + (n+1))
$$

$$
= (n+1)\left(\frac{n(2n+1) + 6n + 6}{6}\right)
$$

$$
= (n+1)\frac{2n^2 + 7n + 6}{6}
$$

$$
= \frac{n+1}{6}(2n+3)(n+2)
$$

$$
= \frac{1}{6}(n+1)((n+1)+1)(2(n+1)+1)
$$

and this proves $P(n + 1)$.

Find the faults with the following proofs by induction:

- 1. Let $P(n)$ be the statement " $n = 0$ ".
	- (a) Base case: $n = 0$. Then $P(0)$ is true.
	- (b) Inductive hypothesis: $P(0), P(1), \ldots, P(n)$ are true.
	- (c) Write $n + 1 = a + b$ where $0 \le a, b < n + 1$. Then by our inductive hypothesis, $P(a)$ and $P(b)$ are true, so $a = b = 0$. Then $n + 1 = a + b = 0 + 0 = 0$.
	- (d) Therefore any nonnegative integer is equal to 0.

The problem here occurs for $n = 0$. When we want to show $P(1)$, we need to write $0+1=1=a+b$ where $0\leq a,b<1$. This forces $a=b=0 \implies a+b=0\neq 1$, so the proof by induction fails.

- 2. We will prove that the sum of all positive integers is finite. Let $P(n)$ be the statement "the sum of the first n positive integers is finite."
	- (a) Base case: $n = 1$. $P(1)$ is true.
	- (b) Inductive hypothesis: $P(n)$ is true.
	- (c) $1+\cdots+(n+1)=(1+\cdots+n)+(n+1)$. Using $P(n)$, the first sum $S=1+\cdots+n$ is finite. Therefore $S + (n + 1)$ is a sum of finite integers, therefore is finite.
	- (d) Therefore the sum of all positive integers is finite.

The problem is that the sum of all positive integers is not of the form "sum of the first n positive integers" for any n . It is important to distinguish what we've shown here. We shown $P(n)$ for all natural numbers n, but what we want is $P(\mathbb{Z}^+)$, but \mathbb{Z}^+ is not a positive integer.