Chinese Remainder Theorem

1. Compute the solution to the following system of congruences:

$$x \equiv 1 \mod 3$$
$$x \equiv 3 \mod 5$$
$$x \equiv 5 \mod 7$$

Solution: Compute m = 3 * 5 * 7 = 105. Compute $M_1 = 35, M_2 = 21, M_3 = 15$. Compute inverses:

 $\begin{array}{ll} M_1y_1 \equiv 35y_1 \equiv 1 \pmod{3} \implies y_1 \equiv 2 \mod{3} \\ M_2y_2 \equiv 21y_2 \equiv 1 \pmod{5} \implies y_2 \equiv 1 \mod{5} \\ M_3y_3 \equiv 15y_3 \equiv 1 \pmod{7} \implies y_3 \equiv 1 \mod{7} \end{array}$

Then plug this in: $x \equiv 1 * 35 * 2 + 3 * 21 * 1 + 5 * 15 * 1 \equiv 208 \equiv 103 \mod 105$.

(Alternatively, you could have noticed that $1 \equiv -2 \mod 3, 3 \equiv -2 \mod 5$, and $5 \equiv -2 \mod 7$ to find $x \equiv -2 \mod 105$.

2. Check that the following system of congruences has no solutions. (In general, there may or may not be solutions when the m_i are not pairwise relatively coprime.)

$$\begin{array}{ll} x \equiv 1 \mod 2 \\ x \equiv 3 \mod 4 \\ x \equiv 5 \mod 8 \end{array}$$

It is enough to check all cases for $x \mod 8$.

If $x \not\equiv 5 \mod 8$, then the last congruence is violated. If $x \equiv 5 \mod 8$, then we will have $x \equiv 1 \mod 2$ (can you see why?). However, we will not have $x \equiv 3 \mod 4$. For example, $5 \equiv 1 \mod 4$, not 3.

The problem here is that $x \equiv 5 \mod 8$, gives a congruence for all divisors of 8, because if $8 \mid x - 5$, then since $2, 4 \mid 8$, then we also have $2, 4 \mid x - 5$.

Induction

Exercises

1. Which numbers can be written as a sum 10a + 25b where $a, b \in \mathbb{Z}_{\geq 0}$?

Solutions: We can write 0, 10, and all numbers of the form 20 + 5k for $k \in \mathbb{Z}_{>0}$.

0 = 10 * 0 + 25 * 0. 10 = 10 * 1 + 25 * 0. We prove the last part by strong induction:

Let P(n) be the statement 20 + 5k can be written as 10a + 25b for $a, b \in \mathbb{Z}_{\geq 0}$.

Our base cases are P(0): 20 + 5(0) = 20 = 10 * 2 + 25 * 0 and P(1): 20 + 5(1) = 25 = 10 * 0 + 25 * 1.

For the inductive hypothesis, assume $P(0), P(1), \ldots, P(n)$ are true. Then we will use them to prove that P(n+1) is true.

20 + 5(n + 1) = 20 + 5n + 5. We consider two cases: if n > 1, then we have that 20 + 5n + 5 - 10 = 20 + 5(n - 1) = 10a + 25b because of P(n - 1). Adding 10 to this gives 10(a + 1) + 25b = 20 + 5(n + 1). Thus P(n + 1) is true.

In the other case, if $n \ge 1$, then n = 0 or n = 1, and these are our base cases.

2. Show that $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}(n(n+1)(2n+1))$. Solution: Let P(n) be the statement $\sum_{i=1}^n i^2 = \frac{1}{6}(n(n+1)(2n+1))$. Our base case is $P(1): 1^2 = \frac{1}{6}(1(2)(3)) = 1$.

For the inductive hypothesis, assume P(n). Then we will use this to prove P(n+1). $1^2 + \cdots + n^2 + (n+1)^2 = \frac{1}{6}(n(n+1)(2n+1)) + (n+1)^2$ using P(n). Then just solve:

$$\begin{aligned} \frac{1}{6}(n(n+1)(2n+1)) + (n+1)^2 &= (n+1)(\frac{1}{6}(n(2n+1)) + (n+1)) \\ &= (n+1)\left(\frac{n(2n+1) + 6n + 6}{6}\right) \\ &= (n+1)\frac{2n^2 + 7n + 6}{6} \\ &= \frac{n+1}{6}(2n+3)(n+2) \\ &= \frac{1}{6}(n+1)((n+1)+1)(2(n+1)+1) \end{aligned}$$

and this proves P(n+1).

Find the faults with the following proofs by induction:

- 1. Let P(n) be the statement "n = 0".
 - (a) Base case: n = 0. Then P(0) is true.
 - (b) Inductive hypothesis: $P(0), P(1), \ldots, P(n)$ are true.
 - (c) Write n + 1 = a + b where $0 \le a, b < n + 1$. Then by our inductive hypothesis, P(a) and P(b) are true, so a = b = 0. Then n + 1 = a + b = 0 + 0 = 0.
 - (d) Therefore any nonnegative integer is equal to 0.

The problem here occurs for n = 0. When we want to show P(1), we need to write 0+1 = 1 = a+b where $0 \le a, b < 1$. This forces $a = b = 0 \implies a+b = 0 \ne 1$, so the proof by induction fails.

- 2. We will prove that the sum of all positive integers is finite. Let P(n) be the statement "the sum of the first n positive integers is finite."
 - (a) Base case: n = 1. P(1) is true.
 - (b) Inductive hypothesis: P(n) is true.
 - (c) $1 + \cdots + (n+1) = (1 + \cdots + n) + (n+1)$. Using P(n), the first sum $S = 1 + \cdots + n$ is finite. Therefore S + (n+1) is a sum of finite integers, therefore is finite.
 - (d) Therefore the sum of all positive integers is finite.

The problem is that the sum of all positive integers is not of the form "sum of the first n positive integers" for any n. It is important to distinguish what we've shown here. We shown P(n) for all natural numbers n, but what we want is $P(\mathbb{Z}^+)$, but \mathbb{Z}^+ is not a positive integer.