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Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) says that given a1, . . . , an ∈ Z, m1, . . . ,mn ∈ Z+,
where the mi are pairwise relatively prime, then the system of congruences:

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ an mod mn

has a unique solution modulo m = m1m2 · · ·mn. We find this solution as follows. Let
Mk = m

mk
. Then (since the mi are pairwise relatively prime) there are inverses yk such that

Mkyk ≡ 1 mod mk. Then a1M1y1 + · · ·+ anMnyn mod m is the solution.

1. Compute the solution to the following system of congruences:

x ≡ 1 mod 3

x ≡ 3 mod 5

x ≡ 5 mod 7

2. Check that the following system of congruences has no solutions. (In general, there
may or may not be solutions when the mi are not pairwise relatively coprime.)

x ≡ 1 mod 2

x ≡ 3 mod 4

x ≡ 5 mod 8

RSA cryptosystem

The RSA cryptosystem is designed to encode information using number theory. The algo-
rithm is as follows.

1. Choose two prime numbers p and q, and an integer e such that gcd(e, (p−1)(q−1)) = 1.
(In general, larger p and q are more secure.)

2. Translate a given message into a sequence of integers by A = 00, B = 01, . . . , Z = 25,
and then group these integers into blocks of 4.

3. Encrypt each block M by replacing it with M e mod n.

4. To decrypt, compute an inverse d of e mod (p− 1)(q − 1). for each block C, compute
Cd ≡Mde ≡M mod n to get back the original message.

(No exercises, but please feel free to ask questions about this.)
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Induction

We use induction to prove an infinite family of statements. The outline for induction goes as
follows: Let P (n) be a statement about the integer n, and suppose we want to prove P (n)
for every integer n. Generally, we can do this in the following steps:

1. Prove P (0) is true. (This is the base case.)

2. (This is the inductive hypothesis.)

(a) For regular induction, assume P (n) is true.

(b) For strong induction, assume P (0), P (1), . . . , P (n) are true.

3. Prove that P (n+ 1) is true, using the inductive hypothesis. This completes the proof.

You can apply induction in other cases. For example: prove P (n) for all integers greater
than d ∈ Z. In this case, your base case is P (d) instead of P (0). For strong induction, you
may need multiple base cases. Induction applies to other subset of Z. For example, it is
possible to prove something for all even numbers, or all multiples of 3, etc.

Exercises

1. Which numbers can be written as a sum 10a + 25b where a, b ∈ Z≥0?

2. Show that 12 + 22 + · · ·+ n2 = 1
6
(n(n + 1)(2n + 1)).

Find the faults with the following proofs by induction:

1. Let P (n) be the statement “n = 0”.

(a) Base case: n = 0. Then P (0) is true.

(b) Inductive hypothesis: P (0), P (1), . . . , P (n) are true.

(c) Write n + 1 = a + b where 0 ≤ a, b < n + 1. Then by our inductive hypothesis,
P (a) and P (b) are true, so a = b = 0. Then n + 1 = a + b = 0 + 0 = 0.

(d) Therefore any nonnegative integer is equal to 0.

2. We will prove that the sum of all positive integers is finite. Let P (n) be the statement
“the sum of the first n positive integers is finite.”

(a) Base case: n = 1. P (1) is true.

(b) Inductive hypothesis: P (n) is true.

(c) 1+ · · ·+(n+1) = (1+ · · ·+n)+(n+1). Using P (n), the first sum S = 1+ · · ·+n
is finite. Therefore S + (n + 1) is a sum of finite integers, therefore is finite.

(d) Therefore the sum of all positive integers is finite.


