Functions (cont.)

Recall: a function $f: A \to B$ is injective (or one-to-one) if $f(a_1) = f(a_2) \implies a_1 = a_2$ for any $a_1, a_2 \in A$. A function $f: A \to B$ is surjective (or onto) if for every $b \in B$, there is $a \in A$ such that f(a) = b.

Definitions

- 1. A function is *bijective* if it is both surjective and injective. We call such functions bijections or one-to-one correspondences.
- 2. Let $f: A \to B$ be a function. The *inverse function*, if it exists, is the function $f^{-1}: B \to A$ defined by $f^{-1}(b) = a$ if f(a) = b.
- 3. Let $f: A \to B$ and $g: B \to C$ be functions. The *composition* is the function $g \circ f: A \to C$ defined by $g \circ f(a) = g(f(a))$.
- 4. A sequence is a function from (a subset of) \mathbb{Z} to a set S.

Exercises

- 1. Let $f: A \to B$ be a function. What condition on f do you need for the inverse function to exist? If the inverse exists, what are the compositions $f \circ f^{-1}$ and $f^{-1} \circ f$? (i.e. what are the domains and codomains, and do you know another name for these functions?)
 - f must be bijective in order for the inverse to exist. (If f is not injective, then $f^{-1}(b)$ is not uniquely defined, so $f^{-1}(b)$ will not be a function. If f is not surjective, then there is some $b \in B$ where $f^{-1}(b)$ will have no possible output.)
 - $f \circ f^{-1} : B \to B$ and $f^{-1} \circ f : A \to A$ are both the identity functions on their respective sets.
- 2. Let A be a set. Consider the set $S = \{f : A \to \{0,1\}\}$ of functions from A to $\{0,1\}$. Can you identify S in terms of a set construction you already know?
 - S is just the power set of A. Think of a function $f: A \to \{0,1\}$ as saying which elements of A are in that subset (1 if it is in, 0 if not).
- 3. Decide whether the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = \lfloor \frac{x}{3} \rfloor$ is surjective. (If yes, give a proof.) Is it injective?
 - This function is surjective. For any $n \in \mathbb{Z}$, $f(3n) = \lfloor \frac{3n}{3} \rfloor = \lfloor n \rfloor = n$. This function is not injective. For example, f(0) = f(1) = 0.

Cardinality

Definitions

- 1. Two sets A and B have the same cardinality if there is a bijection $f: A \to B$, and we say that A and B are in bijection.
- 2. A set is *countable* if it is in bijection with a subset of the \mathbb{Z}^+ . Otherwise we call it uncountable. (There are many kinds of uncountable, but we will not worry about them.) Common countable sets are $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$. Common uncountable sets are \mathbb{R}, \mathbb{C} .

Exercises

1. Show that any subset of a countable set is countable.

Let A be our countable set, and $B \subseteq A$ our subset. Since A is countable, we have a bijection $f: A \to S$ between A and some subset of the positive integers $S \subseteq \mathbb{Z}^+$.

Define the restriction of $f: A \to S$ to B (so we're restricting the domain of f to B) as the function $f|_B: B \to S$ defined by $f|_B(b) = f(b)$ for $b \in B$. Then B is in bijection with the image of $f|_B$, which is a subset of a subset of \mathbb{Z}^+ , so is a subset of \mathbb{Z}^+ . Hence B is again countable.

2. Let A be any set. Show that there is no surjection $f: A \to \mathcal{P}(A)$.

Proof: We're going to use proof by contradiction. The style is similar to that of Russell's paradox.

Suppose for contradiction that there is some surjection $f: A \to \mathcal{P}(A)$. Then (this is the tricky step!) consider the set $B = \{x \in A \mid x \notin f(x)\}$.

Notice that $B \subseteq A$, so $B \in \mathcal{P}(A)$, and because f is surjective there is some $a \in A$ such that f(a) = B. Now we have two cases: either $a \in B$ or $a \notin B$. Let's look what happens:

- (a) If $a \in B$: Then by definition of B, $a \notin f(a)$. However, f(a) = B, so $a \notin B$.
- (b) If $a \notin B$: Then since f(a) = B, we have $a \notin f(a)$. But then $a \in B$.

Let's phrase this in English. If a is an element of B, then it must not be an element of B. On the other hand, if a is not an element of B, then it must be an element of B. These are both impossible, so we have reached a contradiction. Hence our assumption that there was some surjection $f: A \to \mathcal{P}(A)$ is false.

3. Use the above to show that the power set of the positive integers is uncountable.

Let $A = \mathbb{Z}^+$ in the problem above. Then the result of the previous problem says that there is no surjection $f : \mathbb{Z}^+ \to \mathcal{P}(\mathbb{Z}^+)$. But any bijection is also a surjection, so there can be no bijection. Hence $\mathcal{P}(\mathbb{Z}^+)$ is not countable, so it is uncountable.