
math 55 sets and functions Jan. 29

Sets

A set is an unordered collection of objects. We write x ∈ S when x is an element of a set S.
Some common sets are ∅,N,Z,QR,C. Let A and B be sets. Recall the following:

Definitions

1. A ⊆ B if and only if every x ∈ A is also in B

2. A = B if and only if A ⊆ B and B ⊆ A

3. A ∪B = {x | (x ∈ A) ∨ (x ∈ B)} is the union

4. A ∩B = {x | (x ∈ A) ∧ (x ∈ B)} is the intersection

5. |A| is the cardinality of A. It is an integer if A is finite, and infinite otherwise. (We
will learn how to distinguish infinite sets later.)

6. P(S) is the power set of S, the set of all subsets of S

7. A×B = {(a, b) | (a ∈ A) ∧ (b ∈ B)} is the Cartesian Product.

8. A is the complement of A, the set of all elements not in A. Remember that this depends
on the universal set!

Exercises

1. Let A and B be finite sets. (Recall: this means |A| and |B| are integers.) What are
the cardinalities of the following sets?

(a) A ∪B

(b) A ∩B

(c) P(A)

(d) A×B

2. Express A−B using only intersections, unions, and complements.

3. Prove De Morgan’s laws: A ∪B = A ∩B and A ∩B = A ∪B.

4. Prove the distributive laws for sets: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (union over
intersection) and A∩ (B ∪C) = (A∩B)∪ (A∩C) (intersection over union). Can you
prove these using the distributive laws from logic?

5. Let Ai be the set of all integers greater than i, for any integer i ≥ 0. Describe the
sets ∪ni=0Ai, ∩ni=0Ai, ∪∞i=0Ai, and ∩∞i=0Ai. (For the last two, the notation ∪∞i=0 and ∩∞i=0

means for every integer greater than or equal to 0. We won’t be too worried with
infinite unions and intersections in this class.)
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Functions

Fix sets A and B. A function from A to B is an assignment of a unique element of B to
each element of A, and we write this as f : A → B for the function and f(a) = b for an
evaluation of the function at an element a ∈ A.

Definitions

1. A is called the domain of f

2. B is called the codomain of f

3. If X ⊆ A, then f(X) ⊆ B is called the image of X

4. The range of f is the image of A, f(A) ⊆ B.

5. The preimage of Y ⊆ B is {a ∈ A | f(a) ∈ Y }.

6. f is injective (or one-to-one) if f(a1) = f(a2) =⇒ a1 = a2 for any a1, a2 ∈ A.

7. f is surjective (or onto) if for every b ∈ B, there is some a ∈ A with f(a) = b.

Exercises

1. If f : A → B is surjective, what is the relationship between the range and the
codomain?

2. For a function f : A→ B, what kind of object is the preimage of an element b ∈ B?

3. Let A1, A2 ⊆ A for a function f : A → B. Is f(A1 ∪ A2) = f(A1) ∪ f(A2)? What
about f(A1∩A2) = f(A1)∩ f(A2)? (If yes, find a proof; if no, find a counterexample.)
If either is false, is there some condition which makes them true?

4. Describe how f : A→ B can be thought of as a subset of A×B.

5. Let B1, B2 ⊆ B for a function f : A→ B. Is the preimage of B1∪B2 equal to the union
of the preimages of B1 and B2? If the preimage of B1 ∩ B2 equal to the intersection
of the preimages of B1 and B2? (If yes, find a proof; if no, find a counterexample.) If
either is false, is there some condition which makes them true?

6. Decide whether the following are functions. If they are, classify them as surjective,
injective, both, or neither:

(a) f : Z→ Z defined by f(x) = x + 1

(b) f : Z→ Z>0 defined by f(x) = 2|x|
(c) f : R→ R defined by f(x) = 2x

(d) f : Q→ Q defined by f(x) = 1
x
.

(e) f : R→ R>0 defined by x→ ex (R>0 is the set of positive real numbers)

(f) f : R→ R defined by x→ log(x)


