Conditionals and Biconditionals

A conditional statement is of the form "if p, then q," and this is written as $p \to q$. A biconditional statement is of the form "p if and only if q," and this is written as $p \leftrightarrow q$. For a conditional statement $p \to q$, the converse is $q \to p$, the contrapositive is $\neg q \to \neg p$, and the inverse is $\neg p \to \neg q$.

p	q	$p \to q$	$p \leftrightarrow q$	$\neg q \rightarrow \neg p$	$\neg p \lor q$	$(\neg p \land \neg q) \lor (q \land p)$
T	T	Т	T	Т	Т	Т
T	F	F	F	F T	F	F
F	T	Т	F	T	Т	F
F	F	T	T	T	Т	T

- 1. Fill in the missing columns in the truth table above.
- 2. What is the contrapositive of the converse?

The contrapositive of the converse is the inverse.

Logical Equivalences

Two propositions a and b are *logically equivalent* if $a \leftrightarrow b$ is always true (i.e. a and b always have the same truth value), and this is written as $a \equiv b$. A statement that is always true is a *tautology* and a statement that is always false is a *contradiction*.

1. In the truth table above, which statements are logically equivalent?

 $p \to q, \neg q \to \neg p, \neg p \lor q$ are logically equivalent and $p \leftrightarrow q, (\neg p \land \neg q) \lor (p \land q)$ are logically equivalent.

- 2. Give an alternative proof, without using truth tables, that $p \leftrightarrow q \equiv (\neg p \land \neg q) \lor (p \land q)$. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \equiv (\neg p \lor q) \land (\neg q \lor p) \equiv (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)$ $\equiv (\neg p \land \neg q) \lor (q \land p)$.
- 3. Label the following as tautologies, contradictions, or neither.
 - (a) $p \lor \neg (p \land q)$ Tautology
 - (b) $(p \to q) \leftrightarrow (\neg p \to \neg q)$ Neither
 - (c) $(p \lor \neg (p \land q)) \rightarrow (r \land \neg r)$ Contradiction
 - (d) $((a \lor b) \land (a \to c) \land (b \to c)) \to c$ Tautology

De Morgan's Laws

De Morgan's laws are logical equivalences between the negation of a conjunction (resp. disjunction) and the disjunction (resp. conjunction) of the negations. In other words, they are $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$.

1. State de Morgan's laws in English. (If it helps, pick concrete propositions for p and q.) $\neg(p \land q) \equiv \neg p \lor \neg q$: It is not the case that p and q if and only if it is not the case that p or it is not the case that q.

 $\neg(p \lor q) \equiv \neg p \land \neg q$: It is not the case that p or v if and only if it is not the case that q and it is not the case that q.

Quantifiers

Quantifiers are: \forall and \exists . For a propositional function P(x), $\forall x P(x)$ means that P(x) is true for all x in the domain, and $\exists x P(x)$ means that P(x) is true for some x in the domain. Always know what the domain is – this affects the truth value of statements involving quantifiers. For example, let P(x) be the statement $x^2 = -1$. If the domain is \mathbb{R}, \mathbb{Q} , or \mathbb{Z} , then the statement $\exists x P(x)$ is false. However, if the domain is \mathbb{C} , then $\exists x P(x)$ is true.

1. Let P(x, y) be the propositional function: x < y. Use P(x, y) and quantifiers to express the statement: "there is no smallest real number." What is the domain for each quantifier you use?

 $\forall y \exists x P(x, y)$ Each quantifier has domain \mathbb{R} here.

2. Let P(x, y) be as above. Let Q(y) be the propositional function $\forall x P(x, y)$ where the domain of x is \mathbb{Z} (the integers). For what y is Q(y) true?

Q(y) is true when $y = \infty$.

3. Let P(x, y) be the propositional function: x is divisible by y. Use P(x, y) and quantifiers to express the propositional function: "x is a prime number."

A prime number is divisible by only 1 and itself (and 1 is not prime). One way express the propositional function "x is prime" is $\forall y(P(x, y) \rightarrow ((y = 1) \oplus (y = x)))$. We need the exclusive or here because otherwise we will consider 1 as a prime number.

De Morgan

We also have De Morgan's laws for quantifiers. They are: $\neg \exists x P(x) \equiv \forall x \neg P(x)$ and equivalently $\neg \forall x P(x) \equiv \exists x \neg P(x)$.

1. State these laws in English. (If it helps, pick a concrete function P(x) and domain.) $\neg \exists x P(x) \equiv \forall x \neg P(x)$: It is not the case that there exists an x such that P(x) is true if and only if for all x, P(x) is false.

 $\neg \forall x P(x) \equiv \exists x \neg P(x)$: If is not the case that P(x) is true for all x if and only if there exists an x such that P(x) is false.