- 1. False. This function can only show that an improper integral is convergent. Otherwise, it is inconclusive.
- 2. False. The particular solution depends on the initial condition.
- 3. (a) Since $e^{x^2} > x^2$, then $\frac{1}{e^{x^2}} = e^{-x^2} < \frac{1}{x^2}$. By the comparison test, since $\int_1^\infty \frac{1}{x^2} dx$ converges, then so does $\int_1^\infty e^{-x^2} dx$.
 - (b) i. $\frac{dT}{dx} = (A T)^2$. ii. Isolate the variables: $\frac{dT}{(A - T)^2} = dx$ Integrate both sides: $\frac{1}{A - T} = x + C$. Solve for T: $T(x) = A - \frac{1}{x + C}$ Use initial conditions to find the value of C: $96 = T(0) = 75 - \frac{1}{0 + C} \rightarrow C = \frac{-1}{21}$