- 1. False. Sometimes the approximation may be equal to the actual function.
- 2. True. u-substitution tends to simplify the situation so the integration by parts will not be so difficult.
- 3. (a) Use *u*-sub first. Set $u = x^2$. Then du = 2xdx, and $\frac{du}{2} = xdx$. So our integral becomes $\int \frac{1}{2}ue^u du = \frac{1}{2}\int ue^u du$. Now we use integration by parts. Set f(u) = u and $g'(u) = e^u du$. Then f'(u) = du and $g(u) = e^u$. Now plug everything back in to get $\frac{1}{2}\int ue^u du = \frac{1}{2}(ue^u - \int e^u du) = \frac{1}{2}(ue^u - e^u + C)$. Finally, plug back in to get rid of the *u*'s: $\frac{1}{2}(x^2e^{x^2} - e^{x^2} + C)$.
 - (b) The error for midpoint rule E_M is $\frac{C(b-a)^3}{24n^2}$, where $C = \max_{x \in [0,1]} f''(x)$. The second derivative of $2x^4$ is $24x^2$. The maximum occurs at x = 1, and the value is 24. b = 1 and a = 0, so b - a = 1. Then we want $\frac{24(1)^3}{24n^2} \leq \frac{1}{100}$. Solving for n gives $n \geq 10$.